Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Genet ; 12: 728960, 2021.
Article in English | MEDLINE | ID: covidwho-1417081

ABSTRACT

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

2.
Food Chem Toxicol ; 145: 111767, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-778851

ABSTRACT

Currently, coronavirus disease 2019 (COVID-19), has posed an imminent threat to global public health. Although some current therapeutic agents have showed potential prevention or treatment, a growing number of associated adverse events have occurred on patients with COVID-19 in the course of medical treatment. Therefore, a comprehensive assessment of the safety profile of therapeutic agents against COVID-19 is urgently needed. In this study, we proposed a network-based framework to identify the potential side effects of current COVID-19 drugs in clinical trials. We established the associations between 116 COVID-19 drugs and 30 kinds of human tissues based on network proximity and gene-set enrichment analysis (GSEA) approaches. Additionally, we focused on four types of drug-induced toxicities targeting four tissues, including hepatotoxicity, renal toxicity, lung toxicity, and neurotoxicity, and validated our network-based predictions by preclinical and clinical evidence available. Finally, we further performed pharmacovigilance analysis to validate several drug-tissue toxicities via data mining adverse event reporting data, and we identified several new drug-induced side effects without labeling in Food and Drug Administration (FDA) drug instructions. Overall, this study provides forceful approaches to assess potential side effects on COVID-19 drugs, which will be helpful for their safe use in clinical practice and promoting the discovery of antiviral therapeutics against SARS-CoV-2.


Subject(s)
Antineoplastic Agents/adverse effects , Antiviral Agents/adverse effects , Coronavirus Infections/drug therapy , Immunologic Factors/adverse effects , Pharmacovigilance , Pneumonia, Viral/drug therapy , Antineoplastic Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Clinical Trials as Topic , Humans , Immunologic Factors/therapeutic use , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL